next up previous
Next: Diagonalisation of and Up: EFM and a class Previous: Diagonalisation of outer product

Model specification - EFM(1)

EFM(1) is specified under objective measure $P$-dynamics as follows:
$\displaystyle \mathrm{d}r$ $\textstyle =$ $\displaystyle \kappa_r(x+y-r) \mathrm{d}t + (\Sigma \mathrm{d}W)_r$ (91)
$\displaystyle \mathrm{d}x$ $\textstyle =$ $\displaystyle \kappa_x(\alpha_x-x) \mathrm{d}t + (\Sigma \mathrm{d}W)_x$ (92)
$\displaystyle \mathrm{d}y$ $\textstyle =$ $\displaystyle \kappa_y(\alpha_y-y) \mathrm{d}t + (\Sigma \mathrm{d}W)_y$ (93)

where $W$ is a 3-d BM entering through full covariance $V:=\Sigma \Sigma^\prime$ Let $\xi=(r,x,y)^\prime$ and introduce

\begin{displaymath}
A=\left(
\begin{array}{ccc}
-\kappa_r & \kappa_r & \kappa...
...ray}{c}
0 \\
\alpha_x \\
\alpha_y
\end{array}
\right)
\end{displaymath}

which gives the $P$-SDE
\begin{displaymath}
\mathrm{d}\xi = (A\xi+a) \mathrm{d}t + \Sigma \mathrm{d}W
\end{displaymath} (94)

Specify the risk premium $\lambda = (\lambda_r,\lambda_x,\lambda_y)^\prime$
\begin{displaymath}
\lambda = \Sigma^{-1}(\Lambda\xi + \lambda^1)
\end{displaymath} (95)

with diagonal $\Lambda = \textrm{diag}(\lambda_r^1, \lambda_x^1,\lambda_y^1)$. Under the risk-neutral measure $P^\star$ the dynamics reads
$\displaystyle \mathrm{d}\xi$ $\textstyle =$ $\displaystyle (A\xi+a+\Lambda\xi+\lambda^1) \mathrm{d}t + \Sigma \mathrm{d}W^\star$ (96)
  $\textstyle =$ $\displaystyle (A+\Lambda)\xi \mathrm{d}t +(a+\lambda^1) \mathrm{d}t + \Sigma \mathrm{d}W^\star$ (97)

where $\mathrm{d}W^\star = -\lambda \mathrm{d}t + \mathrm{d}W$. The SDE can now be brought into the $P^\star$-form
\begin{displaymath}
\mathrm{d}\xi = (A^\star\xi+a^\star)\,\mathrm{d}t + \Sigma\,\mathrm{d}W^\star
\end{displaymath} (98)

with $A^\star=A+\Lambda$ and $a^\star=a+\lambda^1$, i.e.
\begin{displaymath}
A^\star=\left(
\begin{array}{ccc}
-\kappa_r+\lambda^0_r &...
...a_x^\star& 0 \\
0 & 0 & -\kappa_y^\star
\end{array}\right)
\end{displaymath} (99)

and
\begin{displaymath}
a^\star = \left(
\begin{array}{c}
\lambda_r^1 \\ \kappa_x...
...x^\star \\ \kappa_y^\star\,\alpha_y^\star
\end{array}\right)
\end{displaymath} (100)

i.e. with this particular affine choice of $\lambda$ the structure of the dynamics is maintained under risk neutral measure $P^\star$.



Subsections
next up previous
Next: Diagonalisation of and Up: EFM and a class Previous: Diagonalisation of outer product
Markus Mayer 2009-06-22