next up previous
Next: Bond prices under EFM(1) Up: Model specification - EFM(1) Previous: Model specification - EFM(1)

Diagonalisation of ${A^\star}^\prime$ and $A$

Eigenvalue decomposition of ${A^\star}^\prime$ is possible for $r\neq x$ and $r\neq y$. Write ${A^\star}^\prime$ in short notation:
\begin{displaymath}
{A^\star}^\prime=\left(
\begin{array}{ccc}
-r & 0 & 0\\
r^\prime & -x & 0\\
r^\prime & 0 & -y
\end{array}
\right)
\end{displaymath} (101)

The eigenvalues are $(-r, -x, -y)$ with eigenvectors ( $r\neq x, x\neq y$)
\begin{displaymath}
a_r=\left(\begin{array}{c} 1 \\ \frac{r^\prime}{x-r} \\ \fr...
...t),
a_y=\left(\begin{array}{c} 0 \\ 0 \\ 1\end{array}\right)
\end{displaymath} (102)

The degenerate case $x=y$ has eigenvectors $ar=ar$,$a_{xy}^1=a_x$,$a_{xy}^2=a_y$. Then ${A^\star}^\prime = Q D Q^{-1}$ with $D=\rm {diag}(-r, -x, -y)$ and
\begin{displaymath}
Q=\left(
\begin{array}{ccc}
1 & 0 & 0\\
\frac{r^\prime}...
...1 & 0\\
-\frac{r^\prime}{y-r} & 0 & 1
\end{array}
\right)
\end{displaymath} (103)

The inverse of ${A^\star}^\prime$ will be needed:
\begin{displaymath}
({A^\star}^\prime)^-=\left(
\begin{array}{ccc}
-1/r & 0 &...
...x & 0\\
r^\prime/ry & 0 & -1/y
\end{array}
\right)\quad .
\end{displaymath} (104)

Similarly $A=\tilde Q\,D\,\tilde Q^-$ with $D = diag(A)$ and
\begin{displaymath}
\tilde Q=\left(
\begin{array}{ccc}
1 & -{r\over x-r} & -{...
...r} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\right)\quad .
\end{displaymath} (105)



Markus Mayer 2009-06-22