next up previous
Next: Alternative forward sampling Up: Monte-Carlo approaches Previous: Monte-Carlo approaches

Exact forward sampling

Start again with the forward recursion (10)

$\displaystyle p(s_t,x^t) = \sum_{s_{t-1}} p(x_t,s_t\vert s_{t-1}) p(s_{t-1}, x^{t-1})$    

and reformulate as
$\displaystyle p(s_t\vert x^t)$ $\displaystyle \propto$ $\displaystyle \sum_{s_{t-1}} p(x_t,s_t\vert s_{t-1}) \, p(s_{t-1}\vert x^{t-1})$  
  $\displaystyle =$ $\displaystyle \sum_{s_{t-1}} p(s_t\vert s_{t-1},x_t) \, p(x_t\vert s_{t-1}) \, p(s_{t-1}\vert x^{t-1}) \quad .$  

Approximate $ p(s_{t-1}\vert x^{t-1}) \approx \sum_{i=1}^N w^i \, \delta(s_{t-1}-s^i)$ with $ s^i \sim p(s_{t-1}\vert x^{t-1})$ and $ w_i=1\over N$ , then

$\displaystyle p(s_t\vert x^t) \propto \sum_i w^i p(x_t\vert s^i) \, p(s_t\vert s^i, x_t)$    

The normalisation is just $ \sum_i w^i p(x_t\vert s^i)$ , so for we can sample from $ p(s_t\vert x^t)$ according to this algorithm:
$\displaystyle \mathtt 1.$   $\displaystyle \mathtt{Sample}\quad
i\sim \left(\frac{p(x_t\vert s^i)}{\sum_i p(x_t\vert s^i)}\right)$  
$\displaystyle \mathtt 2.$   $\displaystyle \mathtt{Sample}\quad s_t\sim p(s_t\vert s^i, x_t)$ (24)

This requires to evaluate $ p(x_t\vert s_{t-1})$ and sample from $ p(s_t\vert s^i, x_t)$ . I.e. the algorithm generates a sequence of swarms of `particles' $ \left(s_t^{(i)}\right)_{i=1}^N$ by recursively sampling according to (24).


next up previous
Next: Alternative forward sampling Up: Monte-Carlo approaches Previous: Monte-Carlo approaches
Markus Mayer 2009-06-22