next up previous
Next: Calculation of and : Up: The general setup for Previous: Notation

Max-likelihood inference and EM-Algorithm

The full joint pdf of observed and hidden variables is

$\displaystyle p(xs) = p(s_1)\prod_{t=2}^T p(s_t\vert s_{t-1}) \prod_{t=1}^T p(x_t\vert s_t) \quad .$ (2)

The M-step in the EM algorithm amounts to finding

$\displaystyle \max_p \int ds\, p^\mathsf{old}(s\vert x) \,\ln p(xs)$ (3)

and via eq (2) this is just

$\displaystyle \max_p \int ds\, p^\mathsf{old}(s\vert x) \left[\ln p(s_1)+\sum_{t=2}^T \ln p(s_t\vert s_{t-1}) + \sum_{t=1}^T \ln p(x_t\vert s_t) \right]\quad .$ (4)

The factorization allows to maximise the three terms inpedendently,


    $\displaystyle \max_p \int ds_1\, p^\mathsf{old}(s_1\vert x) \ln p(s_1),$  
    $\displaystyle \max_p \sum_{t=2}^T \int ds_{t-1} ds_t\, p^\mathsf{old}(s_{t-1} s_t\vert x) \ln p(s_t\vert s_{t-1}),$  
    $\displaystyle \max_p \sum_{t=1}^T \int ds_t\, p^\mathsf{old}(s_t\vert x) \ln p(x_t\vert s_t) \quad ,$  

i.e. the quantities $ p(s_{t-1} s_t\vert x)$ and $ p(s_t\vert x)$ have to be calculated. Introduce the following shorter notation for these:
$\displaystyle \gamma_t(s)$ $\displaystyle =$ $\displaystyle p(s_t=s\vert x)\quad,$  
$\displaystyle \Omega_t(s,s^\prime)$ $\displaystyle =$ $\displaystyle p(s_{t-1}=s,s_t=s^\prime\vert x)\quad.$ (5)


next up previous
Next: Calculation of and : Up: The general setup for Previous: Notation
Markus Mayer 2009-06-22