next up previous
Next: Bond portfolios Up: The general -factor Gaussian Previous: The forward curve

Expected excess returns and risk premia

The instantaneous conditional expected excess return is
\begin{displaymath}
r^{xs}\mathrm{d}t = \mathsf{E}\left(\left.\frac{\mathrm{d}P}{P}-r\,\mathrm{d}t\right\vert\mathcal{F}_t\right)\quad,
\end{displaymath} (24)

with

\begin{eqnarray*}
\frac{\mathrm{d}P}{P} &=& \frac{\mathrm{d}u^\prime}{\mathrm{d...
...\left[\lambda(\xi)\,\mathrm{d}t-\Sigma\mathrm{d}W\right]\quad .
\end{eqnarray*}

Since $a^\star-a = \lambda^1$, $A^\star-A = \Lambda$ the conditional expected excess return is
\begin{displaymath}
r^{xs} = u^\prime\lambda^1 + u^\prime\,\Lambda\,\xi\quad ,
\end{displaymath} (25)

and the conditional instantaneous excess return variance is
\begin{displaymath}
\mathsf{var}\left(r^{xs}\right) = u^\prime\,V\,u\quad .
\end{displaymath} (26)

For a choice of $n$ key rates ${\mathsf y_{\mathrm{kr}}}$ the conditional expected excess return is

\begin{eqnarray*}
\mathsf E\left[r^{xs}\vert{\mathsf y_{\mathrm{kr}}}\right]
...
...sf U\Lambda\mathsf U_{\mathrm{kr}}^- {\mathsf v}\right] \quad .
\end{eqnarray*}



Markus Mayer 2009-06-22