next up previous
Next: Bibliography Up: Analytical solutions for Previous: Binomial distribution

The shifted exponential distribution

A random variable $ X$ is distributed according to the exponential distribution if the cdf is $ \Phi(x) = 1-\exp\left(-\lambda x\right)$ . We are interested in the shifted exponential distribution of $ X-1$ . Using eq. (16) it is

$\displaystyle G_\alpha = \log(1-\alpha)+\alpha\int_0^\infty\frac{e^{-\lambda x}}{1+\alpha(x-1)}\quad.$    

The integral is directly related to the incomplete gamma function $ \Gamma(a,z)=\int_z^\infty t^{a-1}e^{-t} dt$ and a linear change of variables gives the result

$\displaystyle G_\alpha = \log(1-\alpha)+\exp\left(\frac{1-\alpha}{\alpha}\lambda\right)\, \Gamma\left(0, \frac{1-\alpha}{\alpha}\lambda\right)\quad.$    

Note that $ \Gamma[0,z]$ is related to the exponential integral function $ \mathrm{Ei}(z) = -\int_{-z}^\infty\frac{e^{-t}}{t} dt$ . i.e. $ \Gamma[0,z] = -\mathrm{Ei}(-z)$ . Figure 2.2 shows the graphs of $ G_\alpha$ for different values of $ \lambda $ . Since $ {\mathsf{E}}(X-1) = \frac{1}{\lambda} -1$ it is $ G^\prime(0) = \frac{1}{\lambda}-1$ and therefore $ G_\alpha$ attains its maximum at $ \alpha>0$ only for $ \lambda<1$ , i.e. those shifted exponential distributions for which the mean is positive.
Fig. 1: $ G_\alpha (\lambda )$ for the exponential distribution for different parameters $ \lambda $ .
Image p1
Unfortunately no closed form solution for $ G = \max_\alpha G_\alpha$ is available and one has to resort to numerical techniques.
Fig.: $ G(\lambda)=\max_\alpha G_\alpha(\lambda)$ for the exponential distribution.
Image p2


next up previous
Next: Bibliography Up: Analytical solutions for Previous: Binomial distribution
Markus Mayer 2010-06-04