next up previous
Next: Autoregressive observations: HMM-AR Up: Hidden Markov Models, etc. Previous: Discrete HMM

Simple Gaussian HMM

The hidden states are $ s_t\in\{1,2,\dots,S\}$ and the observed variables are $ x_t\in{\mathord{\mathbb{R}}}^d$ . The transition probabilities are that of a Markov chain, and the observation probabilities are Gaussian


$\displaystyle p(s_t=i\vert s_{t-1}=j)$ $\displaystyle =$ $\displaystyle A_{ij}$ (29)
$\displaystyle p(x_t\vert s_t=i)$ $\displaystyle =$ $\displaystyle {p_{\mathcal{N}}}(x;\mu_i, V_i),\quad \mu_i\in{\mathord{\mathbb{R}}}^d, V_i\in{\mathord{\mathbb{R}}}^{d\times d}\quad .$ (30)



Markus Mayer 2009-06-22