next up previous
Next: Discrete HMM Up: Hidden Markov Models, etc. Previous: EM-Algorithm

Feasible HMM's

From a slightly more general point of view the HMM can be defined by the initial and transition probabilities

$\displaystyle p(s_1)$      
$\displaystyle p(s_t x_t\vert s_{t-1})$      

and the forward/backward recursion still hold (although the factorization in the M-step of the EM-algorithm fails). The defining probabilities are feasible for the recursions if $ \alpha$ and $ \beta$ are stable under the updating equations:
$\displaystyle \alpha(s)$ $\displaystyle \sim$ $\displaystyle \int ds^\prime \alpha(s^\prime) \, p(x_t\,s_t=s\vert s_{t-1}=s^\prime)\quad\mathrm{and}$  
$\displaystyle \beta(s)$ $\displaystyle \sim$ $\displaystyle \int ds^\prime \beta(s^\prime) \, p(x_t\,s_t=s^\prime\vert s_{t-1}=s)\quad\mathrm{and}$  

where $ \sim$ means that left-hand side and right-hand side are of the same familiy of distributions.



Markus Mayer 2009-06-22