next up previous
Next: Diagonalisation of and Up: EFM(2) Previous: Introduction

Model specification

The Economic Factor Model in its second specifation, EFM(2), is defined under objective measure $P$-dynamics as follows:
$\displaystyle \mathrm{d}r$ $\textstyle =$ $\displaystyle \kappa_r(x-r) \mathrm{d}t + (\Sigma \mathrm{d}W)_r$ (42)
$\displaystyle \mathrm{d}x$ $\textstyle =$ $\displaystyle \kappa_x(y-x) \mathrm{d}t + (\Sigma \mathrm{d}W)_x$ (43)
$\displaystyle \mathrm{d}y$ $\textstyle =$ $\displaystyle \kappa_y(\alpha_y-y) \mathrm{d}t + (\Sigma \mathrm{d}W)_y$ (44)

where $W$ is a 3-d BM entering through full covariance
\begin{displaymath}
V:=\Sigma \Sigma^\prime=
\left(
\begin{array}{ccc}
\sigm...
... \sigma_x \sigma_y c_{xy} & \sigma_y^2
\end{array}
\right).
\end{displaymath} (45)

Let $\xi=(r,x,y)^\prime$ and introduce

\begin{displaymath}
A=\left(
\begin{array}{ccc}
-\kappa_r & \kappa_r & 0 \\ 
...
...}{c}
0 \\
0 \\
\kappa_y\,\alpha_y
\end{array}
\right)
\end{displaymath}

which gives the $P$-SDE
\begin{displaymath}
\mathrm{d}\xi = (A\xi+a) \mathrm{d}t + \Sigma \mathrm{d}W
\end{displaymath} (46)

Specify the risk premium $\lambda = (\lambda_r,\lambda_x,\lambda_y)^\prime$
\begin{displaymath}
\lambda = \Sigma^{-1}(\Lambda\xi + \lambda^1)
\end{displaymath} (47)

with matrix $\Lambda$ given as
\begin{displaymath}
\Lambda =
\left(
\begin{array}{ccc}
\lambda_r^0 & -\lam...
... -\lambda_x^0 \\
0 & 0 & \lambda_y^0
\end{array}
\right).
\end{displaymath} (48)

Under the risk-neutral measure $P^\star$ the dynamics reads
$\displaystyle P^\star:\,\mathrm{d}\xi$ $\textstyle =$ $\displaystyle (A\xi+a+\Lambda\xi+\lambda^1) \mathrm{d}t + \Sigma \mathrm{d}W^\star$ (49)
  $\textstyle =$ $\displaystyle (A+\Lambda)\xi \mathrm{d}t +(a+\lambda^1) \mathrm{d}t + \Sigma \mathrm{d}W^\star$ (50)

where $\mathrm{d}W^\star = -\lambda \mathrm{d}t + \mathrm{d}W$. By introduciong new parameters the SDE can now be brought into the following $P^\star$-form
\begin{displaymath}
P^\star:\,\mathrm{d}\xi = (A^\star\xi+a^\star)\,\mathrm{d}t + \Sigma\,\mathrm{d}W^\star
\end{displaymath} (51)

where $A^\star=A+\Lambda$ and $a^\star=a+\lambda^1$, i.e.
\begin{displaymath}
A^\star=\left(
\begin{array}{ccc}
-\kappa_r+\lambda^0_r &...
...appa_x^\star \\
0 & 0 & -\kappa_y^\star
\end{array}\right)
\end{displaymath} (52)

and
\begin{displaymath}
a^\star = \left(
\begin{array}{c}
\lambda_r^1 \\ \lambda_...
...x^\star \\ \kappa_y^\star\,\alpha_y^\star
\end{array}\right)
\end{displaymath} (53)

i.e. with this particular affine choice of $\lambda$ the structure of the dynamics is maintained under risk neutral measure $P^\star$.


next up previous
Next: Diagonalisation of and Up: EFM(2) Previous: Introduction
Markus Mayer 2009-06-22