next up previous
Next: Finite time portfolio evolution Up: Bond portfolios Previous: Bond portfolios

Local efficient frontier

Since

\begin{eqnarray*}
\mathsf{E}\mathrm{d}\pi - \pi\,r\mathrm{d}t &=& p^\prime\, U\...
...r}\! (\mathrm{d}\pi) &=& p^\prime\, UVU^\prime\, p\,\mathrm{d}t
\end{eqnarray*}

the locally efficient portfolio is
\begin{displaymath}
p^\mathrm{eff}
= \arg_{p\left\vert\mu = p^\prime\,U\,\lam...
...mbda}{\lambda^\prime U^\prime (UVU^\prime)^- U\lambda}\quad ,
\end{displaymath} (28)

and the efficient frontier is
\begin{displaymath}
\frac{\mathsf{var}\! (\mathrm{d}\pi)}{\mathrm{d}t} = \frac{\mu}{\lambda^\prime U^\prime (UVU^\prime)^- U\lambda}\quad ,
\end{displaymath} (29)

i.e.
\begin{displaymath}
\sigma^\mathrm{eff}(\mu) = \frac{\vert\mu\vert}{\sqrt{\lambda^\prime U^\prime (UVU^\prime)^- U\lambda}}\quad .
\end{displaymath} (30)



Markus Mayer 2009-06-22