next up previous
Next: Properties of the term Up: The general -factor Gaussian Previous: Notation


Bond prices

Consider the general Gaussian real-world n-factor model under objective measure
\begin{displaymath}
P:\quad \mathrm{d}\xi = (A\xi+a)\,\mathrm{d}t + \Sigma\,\ma...
...{d}W\, , A\in\mathbb{R}^{n\times n}, a\in\mathbb{R}^n \quad .
\end{displaymath} (1)

Via Girsanov transform to risk-neutral measure $P^\star$ with $\mathrm{d}W = \lambda(\xi) \mathrm{d}t+ \mathrm{d}W^\star$ and $\lambda(\xi)$ affine:
\begin{displaymath}
\lambda(\xi)=\Sigma^-(\Lambda\xi+\lambda^1)\, , \Lambda\in\mathbb{R}^{n\times n}\quad .
\end{displaymath} (2)

Introducing $A^\star=A+\Lambda$ and $a^\star=a+\lambda^1$ leads to risk-neutral dynamics
\begin{displaymath}
P^\star:\quad \mathrm{d}\xi = (A^\star\xi+a^\star)\,\mathrm{d}t + \Sigma\,\mathrm{d}W^\star \quad ,
\end{displaymath} (3)

The price $p(\tau,T)$ of a T-Bond (i.e. a zero-bond of maturity $T$) at time $\tau$ then satisfies the PDE
\begin{displaymath}
-r p + \frac{\partial p}{\partial\tau} + \left(\frac{\parti...
...ac{\partial^2 p}{\partial \xi\partial \xi}\right) \Sigma = 0.
\end{displaymath} (4)

Setting $t=T-\tau$ the ansatz $p(\tau,T) = p(t) = \exp\left(-u(t)^\prime\xi + v(t)\right)$ leads to the following two ODEs
$\displaystyle \frac{\partial u}{\partial t} - {A^\star}^\prime u$ $\textstyle =$ $\displaystyle (1,0,0)^\prime$ (5)
$\displaystyle \frac{\partial v}{\partial t}$ $\textstyle =$ $\displaystyle -u^\prime a^\star + {1\over 2} u^\prime V u \qquad ,$ (6)

with initial conditions $u(0) = 0$ and $v(0)=0$. The function $u(t)$ has a natural interpretation as duration with respect to the rates $\xi$, since $\partial\ln(P)/\partial\xi = u$. The solutions to the two ODEs are 1
$\displaystyle u$ $\textstyle =$ $\displaystyle \left(e^{t {A^\star}^\prime} -1\right) {{A^\star}^\prime}^{-1} e_1$ (7)
$\displaystyle v$ $\textstyle =$ $\displaystyle \int_0^t ds\left[-{a^\star}^\prime u + {1\over 2} u^\prime V u\right]\quad .$ (8)

The asymptotics of $u$ for $t\to 0$ will be useful:
$\displaystyle u = \left(t\,\mathrm{\bf 1}+{t^2\over 2}\,{A^\star}^\prime\right)\,e_1 + o(t^3) \quad .$     (9)

We turn to the calculation of $u$ and $v$ via diagonalization of ${A^\star}^\prime$. To avoid clutter the star$ ^\star$ will be dropped for the remainder of this subsection, i.e. we write $A$ for $A^\star$, etc.

Assuming $A^\prime$ can be diagonalised $A^\prime = Q D Q^{-1}$ with diagonal $D$ the solution may be rewritten

\begin{eqnarray*}
u &=& Q\left(e^{t D} -1\right) b\\
v &=& \int_0^t ds\left[a...
...\over 2} b^\prime e^{s D} Q^\prime V Q e^{s D} b\right] \quad ,
\end{eqnarray*}

where the following abbrevation was introduced:
\begin{displaymath}
b := D^- Q^- e_1\quad .
\end{displaymath} (10)

Denote the eigenvalues of $A^\prime$ by $\nu=(\nu_1,\nu_2,\dots,\nu_n)$. Then $D=\rm {diag}(\nu)$ and $e^{s D}=\rm {diag}(e^{s \nu_i})$ and
\begin{displaymath}
\left(e^{s D} Q^\prime V Q e^{s D}\right)_{ij} = \left(Q^\prime V Q\right)_{ij} e^{s(\nu_i+\nu_j)}
\end{displaymath} (11)

which makes integration towards $v$ straightforward:

\begin{eqnarray*}
v = && t\left[a^\prime Q b + {1\over 2} b^\prime Q^\prime V Q...
..._{ij} \frac{e^{t(\nu_i+\nu_j)}-1}{\nu_i+\nu_j}\right) b \quad .
\end{eqnarray*}

This can be written in another form,

\begin{eqnarray*}
v = && a^\prime Q\left(t-\left(e^{tD}-1\right)D^-\right)b \\ ...
..._j)}-1}{\nu_i+\nu_j}-\frac{e^{t\nu_j}-1}{\nu_j}\right]\right) b
\end{eqnarray*}

or, using the result for $y(\infty)$ from section [*] below,

\begin{eqnarray*}
v = && -t\,y(\infty) + a^\prime Q\left(-\left(e^{tD}-1\right)...
...\nu_i+\nu_j}-\frac{e^{t\nu_j}-1}{\nu_j}\right]\right) b \quad .
\end{eqnarray*}


next up previous
Next: Properties of the term Up: The general -factor Gaussian Previous: Notation
Markus Mayer 2009-06-22