next up previous
Next: OU-process in VAR form Up: OU-processes Previous: OU-processes


Momenta

The n-dimensional OU-process
\begin{displaymath}
\mathrm{d}\xi = (A\xi+a) \mathrm{d}t + \Sigma\,\mathrm{d}W
\end{displaymath} (67)

has solution
\begin{displaymath}
\xi_t = e^{t A}\int_{t_0}^t e^{-\tau A} \left(a\,\mathrm{d}...
...a\,\mathrm{d}W_\tau\right)
+e^{(t-t_0) A}\,\xi_{t_0}\quad .
\end{displaymath} (68)

Then $\xi_t\vert\,\xi_{t^\prime}$ is normal-distributed
\begin{displaymath}
\xi_t\vert\,\xi_{t^\prime} \sim \mathcal{N}\left(\mu_{t\vert\,t^\prime}, V_{t-t^\prime}\right)
\end{displaymath} (69)

with
$\displaystyle \mu_{t\vert\,t^\prime}$ $\textstyle =$ $\displaystyle \mathsf{E}\,\xi_t\vert\,\xi_{t^\prime}
= e^{t A}\int_{t^\prime}^t e^{-\tau A}\,a\,\mathrm{d}\tau + e^{(t-t^\prime) A}\,\xi_{t^\prime}$ (70)
  $\textstyle =$ $\displaystyle e^{(t-t^\prime)A}\left(\xi_{t^\prime}-\mu_\infty\right) + \mu_\infty$ (71)
$\displaystyle V_\delta$ $\textstyle =$ $\displaystyle \mathsf{var}(\xi_{t+\delta}\vert\,\xi_t)
= \int_0^\delta \mathrm{d}\tau\, e^{\tau A}\,V\, e^{\tau A^\prime}\quad .$ (72)

The unconditional mean is $\mu_\infty:=\lim_{t\to\infty}\mu_{t\vert\,t^\prime}=-A^- a$.



Markus Mayer 2009-06-22